
CHM 11 Exam 3 Fall 2007 Section D01BG

You have 2 hours to complete this exam. Be sure to answer each question with as much detail as is possible and reasonable. Each question is equally valued.

1. An atom has 21 electrons. Write the electron configuration (spdf) and indicate I many unpaired electrons the atom has.	10W
2. Arrange the following atoms in order of decreasing radius: Si, Na, Mg.	
3. Select the larger ion in the pair: Na ⁺ vs. K ⁺	
4. Select the larger ion in the pair: Cu ²⁺ vs. Cu ⁺	
5. Select the larger ion in the pair: C ⁴⁻ vs. Si ⁴⁻	
5. Which atom should have a larger first ionization energy: C or Si?	
6. Which atom should have a larger second ionization energy: K or Ca?	
7. Explain whether Cl forms Cl ⁻ or Cl ²⁻ .	

9. Write the Lewis structure for sulfite (SO₃²⁻).

8. Write the Lewis structure for silicon disulfide (SiS_2).

18. Consider	r the energy level diagram for F ₂ . What is the bond ord	ler of F ⁺ ?
σ* _{2px} π* _{2py} , π* _{2pz}		
π^*_{2py}, π^*_{2pz}		
π_{2py} , π_{2pz}		
σ_{2px}		
σ^*_{2s}		
σ_{2s}		