Chapter 9 Chemical Bonding: General Concepts # Multiple Choice ### Section 9.1 - Sodium tends to form ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the sodium ion mimics? - a. $1s^2$ - b. $1s^2 2p^6$ - ! c. $1s^2 2s^2 2p^6$ - d. 1s² 2s² 2p⁶ 3s² e. 1s² 2s² 2p⁶ 3s² 3p⁶ ### Section 9.1 - Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? - a. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4p^6$ b. $1s^2 2s^2 2p^6 3s^2 3p^6 4p^6 4d^{10}$ c. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6$! d. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$ e. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10}$ ## Section 9.3 - 16. The atoms in the nitrogen molecule, N₂, are held together by - a. a single covalent bond - b. a double covalent bond - ! c. a triple covalent bond - d. an ionic bond - e. a magnetic dipole bond ## Section 9.3 - 17. The atoms in the oxygen molecule, O_2 , are held together by - a. a single covalent bond - ! b. a double covalent bond - c. a triple covalent bond - d. an ionic bond - e. a magnetic dipole bond #### Section 9.3 - 18. The atoms in the hydrogen fluoride molecule are held together by - ! a. a single covalent bond - b. a double covalent bond - c. a triple covalent bond - d. an ionic bond ## e. a magnetic dipole bond #### Section 9.3 - 19. The Lewis symbol for the carbon atom shows ___ valence electrons. The number of bonds which carbon usually forms in order to complete its valence shell and obey the octet rule is ___ - a. 4, 1 - b. 4, 2 - c. 2, 4 - d. 4, 3 - ! e. 4, 4 #### Section 9.3 - 20. The Lewis symbol for the nitrogen atom shows __ valence electrons. The number of bonds which nitrogen usually forms in order to complete its valence shell and obey the octet rule is __. - a. 5, 1 - b. 5, 2 - c. 3, 4 - ! d. 5, 3 - e. 5, 4 #### Section 9.3 23. Complete the Lewis structure for HClO₃ from the skeletal template presented below by filling in the bonds and the remaining valence electrons (those which are not in the bonds). If the valence shells are filled to the *usual* limit (maximum of 8), what is the sum of the absolute values of all the formal charges in the molecule? - a. 0 - b. 1 - c. 2 - d. 3 - ! e. 4 ### Section 9.4 29. The compound shown immediately below is an example of a. an alcohol - ! b. a ketone - c. an acid - d. a hydrocarbon - e. an amine 30. The compound shown immediately below is an example of - a. an alcohol - b. an acid - c. an amine - ! d. a ketone - e. a hydrocarbon # Section 9.4 31. The compound shown immediately below is an example of - a. an alcohol - b. a ketone - ! c. an aldehyde - d. an acid - e. an amine ## Section 9.4 33. The compound shown immediately below is an example of - a. an alcohol - b. a ketone - c. an aldehyde - d. an acid - ! e. an amine 34. The compound shown immediately below is an example of - a. an acid - b. an alcohol - c. an aldehyde - ! d. an amine - e. a ketone ### Section 9.4 35. The compound shown immediately below is an example of - ! a. an alcohol - b. a ketone - c. an aldehyde - d. an acid - e. an amine ## Section 9.4 37. The compound shown immediately below is an example of - a. an alcohol - b. a ketone - c. an aldehyde - ! d. an acid - e. an amine #### Section 9.5 39. Which one of the following bonds is the most polar one of the set? | a. H—Br b. H—Cl ! c. H—F d. H—I e. H—N | |---| | Section 9.5 44. Which one of the following is the least electronegative element of the set presented? | | a. F b. N c. C d. O ! e. H | | Section 9.5 46. Which one of the following is the least electronegative element of the set presented? | | a. N b. O c. Cl d. Br ! e. I | | Section 9.6 47. Based on electronegativity considerations, which one of the following listed species should be the strongest oxidizing agent? | | a. Ne b. Kr c. Br₂ ! d. Cl₂ e. S | | Section 9.8 53. The formal charge on the oxygen atom in the carbon monoxide molecule is | | a2
b1
c. 0
! d. +1 | | e. +2 55. The formal charge on the carbon atom in the carbonate ion is | - a. -2 ! b. 0 - c. +1 - d. +2 - e. +4 60. Complete the Lewis structure for HClO₃ from the skeletal template presented below by filling in the bonds and the remaining valence electrons (those which are not in the bonds). If the valence shells are filled to the *usual* limit (maximum of 8), what is the formal charge on the chlorine atom? O H O Cl O - a. -1 - b. 0 - c. +1 - ! d. +2 - e. +3 62. A student drew four possible Lewis structures for HBrO₄ Complete these Lewis structures presented above by filling in the remaining valence electrons (those which are not in the bonds). Based on these structures, the preferred structure would be the structure shown as ____ in which the sum of the absolute values of the formal charges on all the atoms is ____, ___ - a. A, 4 - b. B, 2 - ! c. C, 0 - d. D, 6 - e. D, 0 ### Section 9.8 63. Draw a correct Lewis structure for CH₂Cl₂. Based on this Lewis structure, the calculated value for the formal charge on the carbon atom is - ! a. 0 - b. +4 - c. +2 - d. -2 - e. -4 # Section 9.8 64. Draw a correct Lewis structure for H₃C—NH₂. Based on this Lewis structure, the calculated value for the formal charge on the nitrogen atom is - a. -2 - b. +3 - c. -3 - d. +2 - ! e. 0 | α - | ction | - 0 | Λ | |-------------|-------|-----|---| | > | CTIM | าฯ | ч | - 68. How many resonance structures, if any, can be drawn for the O₃ molecule? - a. 1 (no resonance) - ! b. 2 - c. 3 - d. 4 - e. 5 - 69. How many resonance structures, if any, can be drawn for the nitrate ion? - a. 1 (no resonance) - b. 2 - ! c. 3 - d. 4 - e. 5 # Section 9.9 - 71. How many resonance structures, if any, can be drawn for the BF₃ molecule? - ! a. 1 (no resonance) - b. 2 - c. 3 - d. 4 - e. 5