Chapter 8 The Quantum Mechanical Atom

Multiple Choice

Section 8.1

3. What is the wavelength of electromagnetic radiation which has a frequency of $4.464 \times 10^{14} \text{ s}^{-1}$?

a. 1.338 x 10²³ m
b. 1.489 x 10⁻⁶ m
c. 6.716 x 10⁻⁷ nm
d. 671.6 nm
e. 7.472 x 10⁻¹⁵ nm

Section 8.1

4. What is the wavelength of electromagnetic radiation which has a frequency of $5.732 \times 10^{14} \text{ s}^{-1}$?

a. 1.718 x 10²³ m b. 1.912 x 10⁶ m ! c. 5.230 x 10⁻⁷ m d. 523.0 m e. 5.819 x 10⁻¹⁵ nm

6. What is the wavelength of electromagnetic radiation which has a frequency of $6.282 \times 10^{14} \text{ s}^{-1}$?

a. 1.883 x 10²³ m b. 2.095 x 10⁶ m ! c. 4.772 x 10⁻⁷ m d. 4.772 x 10⁻⁷ nm e. 530.9 nm

Section 8.1

7. Calculate the frequency of visible light having a wavelength of 464.1 nm

a. 139.1 s^{-1} b. $1.548 \times 10^{-6} \text{ s}^{-1}$ c. $1.548 \times 10^{-15} \text{ s}^{-1}$! d. $6.460 \times 10^{14} \text{ s}^{-1}$ e. $6.460 \times 10^5 \text{ s}^{-1}$

Section 8.1

- 9. A police radar unit is operating on a frequency of 9.527 Gigahertz. What is the wavelength of the radiation being employed?
 - a. 314.7 nm b. 314.7 m
 - ! c. 3.147 cm
 - d. 314.7 cm
 - e. 31.78 m

11. Which one of the following types of radiation has the lowest frequency?

- ! a. FM radio waves
 - b. infrared radiation
 - c. microwave radiation
 - d. x-rays
 - e. ultraviolet rays

Section 8.1

12. Which one of the following types of radiation has the lowest frequency?

- a. gamma rays
- b. infrared radiation
- ! c. microwave radiation
 - d. visible light rays
 - e. ultraviolet rays

Section 8.1

13. Which one of the following types of radiation has the highest frequency?

- ! a. blue visible light
 - b. FM radio
 - c. infrared radiation
 - d. microwave radiation
 - e. short wave radio waves

Section 8.1

14. Which one of the following types of radiation has the highest frequency?

- ! a. x-rays
 - b. ultraviolet rays
 - c. FM radio waves
 - d. microwave radiation
 - e. infrared radiation

15. Which one of the following types of radiation has the shortest wavelength?

- a. FM radio waves
- b. infrared radiation
- c. microwave radiation
- d. ultraviolet rays
- ! e. x-rays

Section 8.1

17. Which one of the following types of radiation has the shortest wavelength?

- a. FM radio waves
- b. infrared radiation
- c. microwave radiation
- ! d. ultraviolet rays
 - e. visible light rays

Section 8.1

18. Which one of the following types of radiation has the longest wavelength?

- a. gamma rays
- b. green colored visible light rays
- ! c. red colored visible light rays
 - d. ultraviolet rays
 - e. x-rays

Section 8.1

19. Which one of the following types of radiation has the longest wavelength?

- a. gamma rays
- b. infrared radiation
- ! c. microwave radiation
 - d. ultraviolet rays
 - e. red colored visible light rays

21. What is the energy, in joules, of one photon of microwave radiation with a wavelength of 0.158 m?

! a. $1.26 \times 10^{-24} \text{ J}$ b. $3.14 \times 10^{-26} \text{ J}$ c. $3.19 \times 10^{25} \text{ J}$ d. $3.49 \times 10^{-43} \text{ J}$ e. $7.15 \times 10^{40} \text{ J}$

Section 8.1

22. What is the energy, in joules, of one photon of visible radiation with a wavelength of 464.1 nm?

a. $1.026 \times 10^{-48} \text{ J}$ b. $2.100 \times 10^{35} \text{ J}$ c. $2.341 \times 10^{11} \text{ J}$! d. $4.280 \times 10^{-19} \text{ J}$ e. $4.280 \times 10^{-12} \text{ J}$

26. What is the energy, in joules, of one mole of photons associated with radiation which has a frequency of 3.818×10^{15} Hz?

a. $1.045 \times 10^{-25} \text{ J}$! b. $1.524 \times 10^{6} \text{ J}$ c. $2.530 \times 10^{-18} \text{ J}$ d. $6.564 \times 10^{-7} \text{ J}$ e. $9.568 \times 10^{24} \text{ J}$

Section 8.1

27. What is the wavelength, in nm, of radiation which has an energy of 3.371×10^{-19} joules per photon?

a. 655.9 nm
b. 152.5 nm
c. 170.0 nm
d. 589.3 nm
e. 745.1 nm

30. What is the frequency, in sec⁻¹, of radiation which has an energy of 219.1 kJ per mole (of these photons)?

a. 615.9 x 10¹⁴ sec⁻¹ b. 1.624 x 10¹⁴ sec⁻¹ c. 1.058 x 10⁻¹⁰ sec⁻¹ ! d. 5.491 x 10¹⁴ sec⁻¹ e. 3.588 x 10⁻¹⁹ sec⁻¹

- 35. Which statement below is true with regard to Bohr's model of the atom?
 - a. The model accounted for the absorption spectra of atoms but not for the emission spectra.
 - ! b. The model could account for the emission spectrum of hydrogen and for the Rydberg equation.
 - c. The model was based on the wave properties of the electron.
 - d. The model accounted for the emission spectra of atoms, but not for the absorption spectra.
 - e. The model was generally successful for all atoms to which it was applied.

- 37. The definite energies associated with specific wavelengths in the emission spectrum of atomic hydrogen suggest that
 - a. electrons have a smaller rest mass than photons
 - b. photons have a smaller rest mass than electrons
 - ! c. energy states in the hydrogen atom are quantized
 - d. atomic hydrogen is more stable and has a lower potential energy than molecular hydrogen
 - e. the potential energy of electrons in the atom can have any arbitrary value over a period of time, but the kinetic energy may only have certain specific values

Section 8.2

38. Calculate the energy required to excite a hydrogen atom by causing an electronic transition from the energy level with n = 1 to the level with n = 4. Recall that the quantized energies of the levels in the hydrogen atom are given by:

$$E_n = -\frac{21.79 \text{ x } 10^{-19}}{n^2}$$
 joule

a. $2.017 \times 10^{-29} \text{ J}$! b. $2.043 \times 10^{-18} \text{ J}$ c. $2.192 \times 10^5 \text{ J}$ d. $2.254 \times 10^{-18} \text{ J}$ e. $3.275 \times 10^{-17} \text{ J}$

41. Calculate the frequency of the light emitted by a hydrogen atom during a transition of its electron from the energy level with n = 6 to the level with n = 3. Recall that the quantized energies of the levels in the hydrogen atom are given by:

$$E_n = -\frac{21.79 \times 10^{-19}}{n^2}$$
 joule

a. $1.665 \times 10^{-26} \text{ s}^{-1}$ b. $1.824 \times 10^{-15} \text{ s}^{-1}$! c. $2.740 \times 10^{14} \text{ s}^{-1}$ d. $3.649 \times 10^{-15} \text{ s}^{-1}$ e. $9.132 \times 10^{13} \text{ s}^{-1}$

48. The letter designation for the subshell is based on

- ! a. the value of the secondary quantum number
 - b. the value of the principal quantum number
 - c. the value of the magnetic quantum number, m_l
 - d. the value of the spin quantum number, m_s
 - e. the transverse polarization of the optical emission from the H atom

Section 8.3

49. The three quantum numbers which characterize the solutions to the wave equation describing the behavior of the electron in the H atom are usually designated as

a. ls 2s 2pb. $n l m_s$ c. $m_l m_s m_p$! d. $n l m_l$ e. $l m_l m_s$

- 56. The wave functions which are solutions to the wave equation which describes the behavior of the electron in the hydrogen atom are described by how many quantum numbers?
 - a. 1 b. 2 ! c. 3 d. 4
 - e. 5

Section 8.4

- 57. "No two electrons in the same atom can have all its quantum numbers the same." This statement is based on the work of
 - a. Louis de Broglie
 - b. Werner von Heisenberg
 - c. Albert Einstein
 - ! d. Wolfgang Pauli
 - e. Erwin Schrödinger

Sections 8.3 and 8.4

59. Given the following sets of quantum numbers for $n l m_l m_s$, which one of these sets is not a possible set for an electron in an atom?

	n	l	m_{i}	m_s
	a. 3	2	2	- ¹ / ₂
	b. 3	1	-1	1/2
	c. 4	3	2	1/2
	d. 4	3	-2	$-\frac{1}{2}$
!	e. 5	2	3	1/2

Sections 8.3 and 8.4

62. Given the following sets of quantum numbers for $n l m_l m_s$, which one of these sets is not a possible set for an electron in an atom?

	n	l	m_{l}	m_s
!	a. 3	1	-1	0
	b. 3	2	2	-½
	c. 4	3	2	1/2
	d. 4	3	-2	-1/2
	e. 5	3	2	1/2

- 64. The statement that the ground state configuration of an atom is generated by filling in levels from the lowest (energy-wise) to the highest with electrons observing the maximum for each of these levels is
 - ! a. the Aufbau principle
 - b. Bustamente's principle
 - c. Hund's Rule
 - d. Murphy's rule
 - e. the Pauli Principle

Section 8.6

81. Based on the Aufbau principle and other applicable guiding principles, what ground state electronic configuration would one reasonably expect to find for technetium (Z = 43)?

a. [Kr] $4s^2 3d^5$ b. [Kr] $4s^2 4d^5$ c. [Kr] $4d^7$! d. [Kr] $5s^2 4d^5$ e. [Kr] $5s^2 5d^5$

Section 8.6

83. Which one of the following configurations represents an alkaline earth element?

a. $[Ar] 4s^1 3d^5$ b. $[Ar] 4s^2 3d^4$ c. $[Xe] 5s^2 5p^1$ d. $[Xe] 6s^2 4f^7$! e. $[Rn] 7s^2$

86. A possible set of quantum numbers for an electron in the partially filled subshell in the gallium atom in its ground state configuration would be

l $m_l m_s$ п a. 3 $0 -\frac{1}{2}$ 1 b. 3 1 1 $\frac{1}{2}$ c. 4 0 0 $-\frac{1}{2}$! d. 4 1 0 1/2 e. 4 2 1 $\frac{1}{2}$

Section 8.6

87. A possible set of quantum numbers for an electron in the partially filled subshell in the vanadium atom in its ground state configuration would be

	n	l	m_l	m_s
	a. 3	1	0	$-\frac{1}{2}$
!	b. 3	2	1	1/2
	c. 4	0	0	$-\frac{1}{2}$
	d. 4	1	0	1/2
	e. 4	2	1	1/2

94. Which one of the species below should have the smallest radius?

a. Ca

- b. Ba c. K
- d. Mg
- ! e. C

Section 8.8

95. Which one of the species below should have the largest radius?

a. Ca ! b. Ba c. Al d. Mg e. C

Section 8.8

98. Which one of the species below should have the smallest radius?

! a. Ar

- b. Ca
- c. K
- d. Mg
- e. Na

Section 8.8

99. Which one of the atoms listed below has the largest value for its first ionization energy?

- ! a. Al
 - b. Sr
 - c. Ga
 - d. Cr
 - e. Fr

100. Which one of the species below should have the smallest value for its first ionization energy?

! a. Rb b. Na c. Al d. Ne

e. 0

Section 8.8

101. Which one of the species below should have the smallest value for its first ionization energy?

a. Ba

b. C

! c. Cs

d. K

e. Mg

Section 8.8

103. Which one of the atoms represented by its symbol below has the largest value for its electron affinity?

> a. Al b. Sr

c. Ga ! d. Cl

u. Cl e. F Section 8.8 105. For which one of the processes below is ΔH largest in magnitude?

a.
$$Be^+(g) \to Be^{2+}(g) + e^-$$

! b. $Be^{2+}(g) \to Be^{3+}(g) + e^-$
c. $B^{2+}(g) \to B^{3+}(g) + e^-$
d. $C(g) \to C^+(g) + e^-$
e. $C^{2+}(g) \to C^{3+}(g) + e^-$

Fill In The Blanks Section 8.3 108. The number of orbitals in a shell with n = 3 is _____ (!9)

Section 8.3 109. The number of orbitals in a subshell with l = 3 is _____ (!7)