KINGSBOROUGH COMMUNITY COLLEGE
CITY UNIVERSITY OF NEW YORK
DEPARTMENT OF BIOLOGICAL SCIENCES

GENERAL BIOLOGY II (BIO 01400) SYLLABUS
Fall 2018, Winter 2019, Spring 2019, Summer 2019

COURSE DESCRIPTION:
BIO 1300, 1400 – GENERAL BIOLOGY I AND II (4 crs. 6 hrs. each semester) A one-year, two-semester course for students who plan to major in biological sciences, or prepare for a preprofessional program. Classroom and laboratory sessions focus on biological topics as they apply to all life, to recent scientific findings and how they advance understanding classical concepts, the interaction of environmental and biological forces to produce life. Prerequisites for BIO 1300: Passing scores on the CUNY Reading and Writing exams and the COMPASS Math Skills Test. Prerequisite for BIO 1400: BIO 1300

STUDENT LEARNING OUTCOMES
Upon completion of the course students should be able to:
• Demonstrate knowledge of evolution, ecology, and the phylogenetic relationships of organisms.
• Use a light microscope to compare cells and tissues from different species and document similarities and differences observed.
• Analyze biological data and develop a conclusion using scientific reasoning.
• Formulate a hypothesis and design an experiment to test the hypothesis.
• Differentiate between the characteristics of members of the kingdoms.

GRADES
The General Biology II course will be graded as follows:
50% Lecture, 20% of which will be the final examination, and
50% Laboratory
Additional details regarding examinations, assignments, etc. will be provided by your lecture instructor; details regarding quizzes, papers, other assignments, etc. will be provided by your laboratory instructor.

ATTENDANCE
Kingsborough Community College has a class attendance policy. For a course that meets 6 hours a week, students cannot miss more than 12 hours in total (lecture and/or lab). In addition, regardless of the number of hours missed, you may not miss more than 2 labs. A student that has missed more hours of class than is allowed, or more than two labs, by the College attendance policy will receive a grade of WU or F. An INC (incomplete) grade is only assigned if a student is doing passing work, but missing an assignment or an examination. An INC grade changes to a “FIN,” if work is not made up by the 10th week of the next 12-week module.

TEXTBOOKS
The required textbooks for this course are:
Lecture:

Laboratory:
ADDITIONAL REQUIREMENTS
Students must purchase a knee-length laboratory coat, a dissecting kit, disposable gloves & goggles. Laboratory coats will be worn at all times during classes in the laboratory. Students that do have a laboratory coat will not be allowed into a biology laboratory. Gloves will not be provided but may be purchased by students if they wish to use gloves.

ACCESSIBILITY
Access-Ability Services (AAS) serves as a liaison and resource to the KCC community regarding disability issues, promotes equal access to all KCC programs and activities, and makes every reasonable effort to provide appropriate accommodations and assistance to students with disabilities. Please contact this office if you require such accommodations and assistance. Your instructor will be glad to make the accommodations you need, but you must have documentation from the Access-Ability office for any accommodations.

CIVILITY
The following statement is from KCC’s Website on Civility: “Kingsborough Community College is committed to the highest standards of academic and ethical integrity, acknowledging that respect for self and others is the foundation of educational excellence. Civility in the classroom and respect for the opinions of others is very important in an academic environment. It is likely you will not agree with everything that is said or discussed in the classroom. Courteous behavior and responses are expected. Therefore, in this classroom, any acts of harassment, and/or discrimination based on matters of race, gender, sexual orientation, religion, and/or ability is not acceptable. Whether we are students, faculty, or staff, we have a right to be in a safe environment, free of disturbance and civil in all aspects of human relations.”

ACADEMIC INTEGRITY
Academic Dishonesty is prohibited in The City University of New York and is punishable by penalties, including failing grades, suspension, and expulsion, as provided herein. Additional information can be found in the College catalog (http://www.kingsborough.edu/sub-registration/Pages/catalog.aspx)

Plagiarism as a violation of academic integrity
Students will be asked to write papers and laboratory assignments. During this endeavor, they should be careful to avoid plagiarism. Plagiarism is the intentional theft(s) of someone else’s intellectual property without attribution (proper credit). Determination and penalty – ranging from grade reduction to course failure – will be decided by the instructor. Internet plagiarism includes submitting downloaded term papers or parts of term papers, paraphrasing or copying information from the internet without citing the source, and “cutting & pasting” from various sources without proper attribution.

VISION AND CHANGE
This course has been aligned with National Science Foundation’s Vision and Change. To this end, creative teaching strategies have been developed to facilitate student learning. The objectives of the course are structured to achieve the course learning outcomes. Assessment of some or all course learning outcomes is done every semester, the results are analyzed, and suggestions for improving student learning, and meeting the course learning outcomes, are discussed. In addition, suggestions are provided on assessment strategies. Finally, the incorporation of the following lecture and lab activities, which are important in developing competencies that last beyond the classroom, are encouraged:

1. Lab activities that are inquiry-based
2. Activities that foster critical thinking
3. Activities that promote quantitative competencies
4. Activities that relate the scientific information to real world practices

Recommendations to the Student:
- Textbook pages as well as laboratory assignments should be read before class.
- Observe all safety precautions as instructed in the laboratory. They are for your protection.
- Each student is responsible for the proper and safe maintenance of their laboratory work area. Bench tops and microscopes must be properly cleaned before and after use.
LECTURE TOPIC OUTLINE BIOLOGY 01400

Unit 1: Evolution

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters (pages)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles and mechanisms of evolution</td>
<td>22 (466-483)</td>
<td>2</td>
</tr>
<tr>
<td>Microevolution, speciation, macroevolution</td>
<td>23 (484-503), 24 (504-522)</td>
<td>3</td>
</tr>
<tr>
<td>Origin & history of life</td>
<td>25 (523-549)</td>
<td>1.5</td>
</tr>
<tr>
<td>Taxonomy & phylogenetics</td>
<td>26 (551-570)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>

Unit 2: Organismal biology I

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters (pages)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses, viroids, & prions</td>
<td>19 (396-412)</td>
<td>1</td>
</tr>
<tr>
<td>Archaea & Bacteria</td>
<td>27 (571-590)</td>
<td>2</td>
</tr>
<tr>
<td>Protists</td>
<td>28 (591-615)</td>
<td>1.5</td>
</tr>
<tr>
<td>Fungi</td>
<td>31 (652-670)</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Unit 3: Organismal biology II: Plants

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters (pages)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant diversity</td>
<td>29 (616-633), 30 (634-651)</td>
<td>2</td>
</tr>
<tr>
<td>Plant structure and function</td>
<td>35 (756-781), 38 (820-839)</td>
<td>1</td>
</tr>
<tr>
<td>Plant growth and reproduction</td>
<td>35 (752-777), 38 (820-839)</td>
<td>2</td>
</tr>
<tr>
<td>Plant nutrition and transport</td>
<td>36 (782-802)</td>
<td>2</td>
</tr>
<tr>
<td>Plant response to the environment</td>
<td>39 (840-869)</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8.5</td>
</tr>
</tbody>
</table>

Unit 4: Organismal biology II: Animals

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters (pages)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal diversity</td>
<td>32 (671-683), 33 (684-715), 34 (716-754)</td>
<td>2.5</td>
</tr>
<tr>
<td>Primate and human evolution</td>
<td>34 (716-754)</td>
<td>1</td>
</tr>
<tr>
<td>Reproduction</td>
<td>46 (1017-1040)</td>
<td>1.5</td>
</tr>
<tr>
<td>Development</td>
<td>47 (1041-1064)</td>
<td>1</td>
</tr>
<tr>
<td>Physiology: thermoregulation, feedback mechanisms, etc.</td>
<td>40 (871-895)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Unit 5: Ecology

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters (pages)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: biomes, levels of organization</td>
<td>52 (1161-1187)</td>
<td>1.5</td>
</tr>
<tr>
<td>Population ecology</td>
<td>53 (1188-1211)</td>
<td>1.5</td>
</tr>
<tr>
<td>Community ecology</td>
<td>54 (1212-1235)</td>
<td>1</td>
</tr>
<tr>
<td>-Biosphere</td>
<td>55 (1236-1257)</td>
<td>1.5</td>
</tr>
<tr>
<td>Conservation ecology</td>
<td>56 (1258-1282)</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Note: Students will be asked to write multiple papers.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Chapters: Exercises</th>
</tr>
</thead>
</table>
| 1 | Microevolution, speciation, and macroevolution and origin of life | 1.2: Geologic Time
1.3: The Fossil Record and Human Evolution
Neanderthal DNA Exercise |
| 2 | Evolution: study and mechanisms | 2.1: Natural Selection
2.2: Mutation
2.3: Genetic Drift |
| 3 | Taxonomy and phylogenetics | 3.1: Constructing a Dichotomous Key
3.2A: Using a Taxonomic Key (Freshwater)
3.2B: Using a Taxonomic Key (Trees/Shrubs) |
| 4 | Bacteria and Protists (I) | 4.1 B: Domain Bacteria (Bacteria)
4.1 C1: Domain Bacteria (Cyanobacteria: Oscillatoria)
4.2 A: Domain Eukarya (Parabasalia)
4.2 B1: Euglenozoa (Trypanosoma)
4.2 B2: Euglenozoa (Euglenoids)
4.2 C1: Alveolata (Ciliated Protozoans)
4.2 C2: Alveolata (Dinoflagellates)
4.2 C3: Alveolata (Apicomplexans)
4.2 D1: Stramenopila (Oomycotes)
4.2 D2: Stramenopila (Chrysophytes, Diatoms)
5.4B: Amoebozoa: (Amoeba) and demonstration of Dictyostelium |
| 5 | Protists (II) and Fungi. | 5.1: Rhodophyta (Red Algae)
4.2 D3: Phaeophytes (Brown Algae)
5.2: Chlorophyta (Green Algae)
5.3: Charophyta (Desmids and Stoneworts)
6.2: Zygomycota
6.4: Ascomycota
6.5: Basidiomycota
6.6: Imperfect Fungi
6.7: Mutualistic Fungi |
| 6 | Plants I | 7.1: Charophyta
7.2: Hepatophyta
7.3 Photoperiod experiment (Merchantia)
7.4: Bryophyta
8.3: Moniliophyta (Sphenophyta, Horsetails)
8.4: Moniliophyta (Pterophyta, Ferns) |
| 7 | Plants II | 9.1: Coniferophyta
9.3: Ginkgophyta
10.1: External Structures of the Flower
10.2: Life Cycle of a Flowering Plant
11.1: External Structures of the Flowering Plant
11.2: The root system |
Animals I

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 B</td>
<td>Sponges (Porifera, Demospongiae)</td>
</tr>
<tr>
<td>12.2 A</td>
<td>Cnidarians (Cnidaria, Hydrozoa)</td>
</tr>
<tr>
<td>12.2 C</td>
<td>Cnidarians (Cnidaria, Anthozoa, Corals and Sea Anemones)</td>
</tr>
<tr>
<td>13.1 A</td>
<td>Flatworms (Platyhelminthes, Turbellaria, Planarians)</td>
</tr>
<tr>
<td>13.2</td>
<td>Rotifers (Rotifera)</td>
</tr>
<tr>
<td>14.1 A</td>
<td>Annelids (Annelida, Oligochaetes, Earthworms)</td>
</tr>
<tr>
<td>14.1 C</td>
<td>Annelids (Annelida, Hirudinea, Leeches)</td>
</tr>
<tr>
<td>14.2 A</td>
<td>Mollusk (Mollusca, Bivalve, Freshwater clams)</td>
</tr>
<tr>
<td>14.2 B</td>
<td>Mollusk (Mollusca, Gastropoda, Snail)</td>
</tr>
<tr>
<td>14.2 C</td>
<td>Mollusk (Mollusca, Cephalopoda, Squid)</td>
</tr>
<tr>
<td>15.1 A</td>
<td>Roundworms (Nematoda, Free-Living Roundworms, Vinegar Eel)</td>
</tr>
<tr>
<td>15.2 A</td>
<td>Joint-Legged Animals (Arthropoda, Crustacea, Crustaceans)</td>
</tr>
<tr>
<td>15.2 B</td>
<td>Joint-Legged Animals (Arthropoda, Hexapoda, Insects)</td>
</tr>
<tr>
<td>15.2 C</td>
<td>Joint-Legged Animals (Arthropoda, Myriapoda, Centipedes and Millipedes)</td>
</tr>
<tr>
<td>15.2 D</td>
<td>Joint-Legged Animals (Arthropoda, Chelicerata, spiders, Horseshoe Crabs etc)</td>
</tr>
<tr>
<td>16.1 A</td>
<td>Echinoderms (Echinodermata, Asteroidea, Sea Star)</td>
</tr>
<tr>
<td>16.1 B</td>
<td>Echinoderms (Echinodermata, Sea Urchins, Sand Dollar)</td>
</tr>
</tbody>
</table>

Animals II

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Chordates (Chordata)</td>
</tr>
<tr>
<td>17.1</td>
<td>Lampreys (Cephalaspidomorphi)</td>
</tr>
<tr>
<td>17.2</td>
<td>Cartilaginous Fishes (Chondrichthyes)</td>
</tr>
<tr>
<td>17.3</td>
<td>Bony Fishes (Osteichthyes)</td>
</tr>
<tr>
<td>17.4</td>
<td>Amphibians (Amphibia)</td>
</tr>
<tr>
<td>17.5</td>
<td>Reptiles (Reptilia)</td>
</tr>
<tr>
<td>17.6</td>
<td>Birds (Aves)</td>
</tr>
<tr>
<td>17.7</td>
<td>Mammals (Mammalia)</td>
</tr>
<tr>
<td>18.1</td>
<td>Gametes</td>
</tr>
<tr>
<td>18.4</td>
<td>(Cleavage)</td>
</tr>
</tbody>
</table>

Ecology I

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Food Webs</td>
</tr>
<tr>
<td>20.2</td>
<td>Flow of Energy Through and Ecosystem</td>
</tr>
<tr>
<td>20.3 A</td>
<td>Survivorship (Dice)</td>
</tr>
<tr>
<td>20.3 B</td>
<td>Survivorship (Bubble)</td>
</tr>
<tr>
<td>20.4</td>
<td>Plotting Survivorship Curves</td>
</tr>
<tr>
<td>20.5</td>
<td>Interpreting the Survivorship Curves</td>
</tr>
</tbody>
</table>

Ecology II

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Impact of Land Use Changes</td>
</tr>
<tr>
<td>21.2</td>
<td>Evaluation of Water Quality of a Stream or another Body of Water</td>
</tr>
<tr>
<td>22.4</td>
<td>Phototaxis experiment</td>
</tr>
</tbody>
</table>

Student presentations

Student presentations on natural history of one plant and one animal species
COURSE OBJECTIVES

UNIT 1: EVOLUTION

EVOLUTION: STUDY & MECHANISMS

♦ In no more than three sentences, define biological evolution.
♦ Explain in a series of steps how natural selection results in evolution.
♦ Define and provide one example for each of the following terms: Fossils, morphological homology (homologous and vestigial structures), embryological homology, biochemical homology, biogeography, and analogous structures.
♦ In a paragraph, explain how each of the above provides evidence for the occurrence of evolution, and more specifically convergent and divergent evolution.

MICROEVOLUTION, SPECIATION, & MACROEVOLUTION

♦ Define, population genetics, gene pool, alleles, & genetic variability.
♦ State the five conditions required for Hardy-Weinberg equilibrium.
♦ In a paragraph, describe the significance of the Hardy-Weinberg principle as it relates to evolution.
♦ In a paragraph, define each term and then describe how nonrandom mating, mutation, genetic drift, gene flow, and natural selection alter allele frequencies in populations.
♦ Define p, q, p^2, q^2, and 2pq in the Hardy-Weinberg equation.
♦ Given data, use the Hardy-Weinberg equation to determine the frequencies of two alleles, and of the genotypes they produce, hence to predict the percentage of the population that is homozygous dominant, heterozygous, or homozygous recessive for that trait.
♦ In a paragraph, state how mutation and genetic recombination provide the variation needed for evolution to occur.
♦ In a paragraph, describe how each of the following mechanisms affects the genetic variability of a population: natural selection, genetic drift (including the founder effect and bottlenecks), and gene flow.
♦ In one or two sentences, explain how each of the above mechanisms leads to evolution (i.e., a change in allele frequencies) in a population.
♦ Use a graph with an example to demonstrate stabilizing, directional, and disruptive selection.
♦ Define sexual selection and give one example.
♦ Define the biological species concept and state its limits.
♦ Define adaptation and in two sentences explain the role of the environment in adaptation.
♦ In a paragraph, explain the significance of reproductive isolating mechanisms and give three examples of isolating mechanisms.
♦ Define allopatric and sympatric speciation. Give one example for each in both animals and plants.

THE ORIGIN AND HISTORY OF LIFE

♦ In a paragraph, describe the conditions that are thought to have existed on early Earth just prior to the origin of life.
♦ Outline the major steps hypothesized to have occurred in the origin of cells and state four conditions required for life to occur (Oparin hypothesis).
♦ Explain at least two alternative hypotheses for the origin of the first living things. Identify the most likely candidate for the first living organism relative to the organisms found on Earth today.
♦ State the origin of O2 and its consequences on life.
♦ List two organelles whose origin is explained by the endosymbiont theory and in a paragraph summarize the evidence supporting it.
♦ Draw a timeline indicating five major events reflecting the transitions in the history of life on Earth from the formation of the cell to the development of fungi, plants and animals.
♦ In three sentences, explain the use of radiometric dating to determine the ages of fossils and rocks in the geologic record.
♦ List, in order, a minimum of five steps to summarize how life originated on Earth, from the formation of organic monomers through the rise of eukaryotic organisms.

TAXONOMY & PHYLOGENETICS

♦ Draw a diagram to show the biological hierarchy (domain, kingdom, phylum, etc.).
♦ Explain how organisms are classified in the biological hierarchy.
♦ State how binomial nomenclature is used to identify species.
Explain the difference between shared primitive and shared derived characteristics.
Write a paragraph to describe how various types of evidence are used to reconstruct phylogeny, including the fossil record, morphological traits, and molecular traits.

UNIT 2: VIRUSES, PROKARYOTES, PROTISTS AND FUNGI

BACTERIA, ARCHAEA AND VIRUSES

List 3 significant roles of bacteria in the environment.
Name the 3 most common bacterial shapes.
Prepare a table comparing the chemical differences between Gram positive and Gram negative cell walls.
Define the following bacterial structures and state the advantages of each: (a) capsule; (b) plasmid; and (c) endospores.
Describe in a series of steps the most common mechanism of bacterial cell multiplication.
Distinguish between the organization of genetic material in prokaryotic and eukaryotic cells.
Name 3 mechanisms by which cells generate genetic diversity.
In a series of steps, describe the following bacterial processes: (a) transformation; (b) transduction; (c) conjugation.
List 5 properties used to distinguish bacteria from Archaea.
Prepare a drawing of a virus and label the following parts: (a) genome; (b) capsid; (c) envelope.
Prepare a table to compare viruses, prions, and viroids.

 PROTISTS AND FUNGI

In one paragraph, explain the role of primary and secondary endosymbiosis in the evolution of the protists.
For the four supergroups of protists, make a table listing the characteristics of and three examples for each supergroup (Excavata, "SAR" clade, Archaeplastida, and Unikonta).
Name two different protists that play a key role in their ecological community, and in one paragraph describe that role.
Define the following fungal structures: (a) hyphae; (b) mycelium and explain in two to three sentences the nutritional mode employed by fungi.
State one difference between the cell walls of fungi compared to the cell walls of plants.
Explain the reproductive cycle of a typical fungus.
State 2 significant industrial uses of fungi.

UNIT 3: PLANTS

PLANT DIVERSITY
List four defining characteristics of plants that distinguish them from charophytes.
In one or two paragraphs, list and define adaptations that plants might have to a terrestrial environment.
Draw a diagram and use it to describe, in a short paragraph, alternations of generations and distinguish between a gametophyte and a sporophyte.
Draw a phylogenetic tree that shows the relationship between nonvascular seedless, seedless vascular, and seed plants including both gymnosperms and angiosperms.
State the differences between the life cycles of nonvascular plants, seedless vascular plants, and seed plants.
List six characteristics that are used to distinguish between monocots and eudicots. In one sentence for each, describe how each characteristic differs between the two.

PLANT STRUCTURE AND FUNCTION
Draw a diagram of a plant and identify the root and shoot systems and the following respective organs; stem, leaf, flower, tap root, and fibrous root.
List three types of tissue in a vascular plant, and identify the location and function of each.
For each vascular plant tissue type above, list the types of cells of which they are made, and the characteristics of those cells.
Define meristem, and state the difference between apical and lateral meristems.
Identify and state the function of the following: root hairs, cuticle, epidermis, endodermis, plasmodesmata, xylem, phloem, companion cells, cortex, palisade mesophyll, spongy mesophyll.
Distinguish between simple and compound leaves.

PLANT GROWTH AND REPRODUCTION
Define primary and secondary growth.
In one or two sentences, distinguish between monoecious and dioecious plants and describe the implication for pollination.
Draw diagrams and in one paragraph for each describe the life cycles of gymnosperms and angiosperms.
Draw a diagram to identify the following structures and define each in a short sentence: stamen, anther, pollen, carpel, pistil, style, stigma, ovary, ovule, sepal, petals, calyx, corolla, embryo sac, endosperm, seed coat, and fruit.

Prepare a labeled drawing of a seed including the following parts: the embryo sac, endosperm, and seed coat.

Define the following terms in relation to plants: annual, biennial, and perennial.

PLANT NUTRITION AND TRANSPORT
- In five or six sentences, explain how water is transported in vascular plants, including the concepts of root pressure, transpiration, and the cohesion-tension mechanism.
- Write a short paragraph describing the mechanism of phloem transport (mass transport, translocation).

PLANT RESPONSE TO THE ENVIRONMENT
- Define tropism, gravitropism, phototropism, and thigmotropism.
- Define photoperiodism and in one to two sentences describe its importance in flower production.
- In two sentences for each, state the action and significance of auxins, gibberellins, ethylene, cytokinins, and abscisic acid in plants.

UNIT 4: ANIMALS

ANIMAL EVOLUTION AND DIVERSITY
- List five characteristics of organisms in the Kingdom Animalia, including at least three traits unique to animals.
- In one to two paragraphs, provide an explanation for the origin of the Kingdom Animalia.
- From an evolutionary perspective, state the differences between: metazoan and eumetazoa, radial & bilateral symmetry; diploblastic & triploblastic embryos; ectoderm, mesoderm & endoderm; coelomate, pseudocoelomate & acoelomate body plans; and protostome & deuterostome development.
- Classify each of the following phyla as metazoan, eumetazoa, bilateria, protostomes, or deuterostomes: Porifera, Cnidaria, Platyhelminthes, Rotifera, Ectoprocta (Bryozoa), Brachiopoda, Echinodermata, Chordata, Nematoda, Annelida, Mollusca, Arthropoda.
- Prepare a list of the main characteristics used to identify each of the following major phyla: Cnidaria, Echinodermata, Chordata, Annelida, Mollusca, and Arthropoda.
- Provide examples of three different organisms for each of the following phyla: Cnidaria, Echinodermata, Chordata, Annelida, Mollusca, Arthropoda.
- Prepare a table listing the traits, the definition of traits, and three examples of each of the following: chordates, vertebrates, tetrapods, and amniotes.
- List three characteristics of each of the major tetrapod groups: amphibians, reptiles, birds, mammals; and provide three examples of each.

PRIMATE AND HUMAN EVOLUTION
- State the evolutionary trends that lead to the evolution of primates and humans.
- State five major characteristics that distinguish hominids from other mammals.
- Diagram a basic timeline for the evolution of hominids (from 7 Ma to present). Write a paragraph explaining your timeline.

PHYSIOLOGY
- In a sentence or two, distinguish between anatomy and physiology.
- In a table, list the organ systems in vertebrate animals, their main components, and provide the function(s) of each.
- List the four major tissue classes in animals and state the unique features and functions of each.
- Define homeostasis.
- Define endothermy, ectothermy.

REPRODUCTION
- In 2-4 sentences, distinguish between asexual reproduction and sexual reproduction.
- Define: egg, sperm, fertilization, and zygote.
- In a paragraph, state the features of the following forms of asexual reproduction: fission, budding, parthenogenesis.
- In a paragraph, distinguish between external fertilization and internal fertilization.

DEVELOPMENT
- Define each of the following terms: fertilization, cleavage, gastrulation, cell differentiation, morphogenesis, organogenesis.
- Describe in a series of steps the process of early embryogenesis (from fertilization through neurulation) using the following terms: zygote, blastocoele, blastula, gastrula and neurula.
- Prepare a table listing the tissues and organs derived from the ectoderm, endoderm, and mesoderm in vertebrates.
UNIT 5: ECOLOGY

INTRODUCTION TO ECOLOGY

♦ Define ecology.
♦ List three biotic and three abiotic factors that determine the distribution of organisms on Earth.
♦ List ten of Earth’s major terrestrial and/or aquatic biomes and list three characteristics of each.
♦ Identify two factors that dictate the distribution of all terrestrial biomes and explain the importance of each in one sentence.
♦ List in the correct order and define in a sentence the different levels of ecological organization (individual, population, species, community, ecosystem, biome, biosphere).
♦ Explain, in one paragraph, how ecological complexity, redundancy and biodiversity contribute to ecosystem stability.

POPULATION ECOLOGY

♦ Define the term population in a sentence.
♦ In a paragraph, apply the concepts of biotic potential and environmental resistance to human populations using real life examples.
♦ Define each of the following in a sentence: demography, density, distribution, and size as they relate to population ecology.
♦ Explain, in one paragraph, the four key factors that affect population size (immigration, emigration, births and deaths).
♦ Calculate for a given population the growth rate (r), and explain why the growth of that population is always exponential if r is above zero.
♦ Draw both a J and S shaped growth curve on a single graph and explain in a short paragraph how they are related.
♦ Define the term carrying capacity (K) and describe in one sentence what happens to a population when K is exceeded.
♦ In a paragraph discuss four differences between r-strategists to K-strategists.
♦ In two sentences differentiate between density-dependent and density-independent forces and their impact on population size.
♦ In a paragraph discuss the key differences between the three types of survivorship curves (Type I, Type II and Type III); give one example of an organism that exhibits each pattern and state in a sentence for each what traits inform you that it exhibits that strategy.
♦ State seven ways humans make an impact on the environment through population size and/or the ecological footprint of its citizens.

COMMUNITY ECOLOGY

♦ Define the term “community” in one sentence.
♦ Identify three important interactions between organisms within a community.
♦ List three types of resources for which organisms might compete.
♦ Using one organism as an example, describe the difference between a fundamental niche and a realized niche in one or two sentences.
♦ Using one or two sentences, compare and contrast resource partitioning and the exclusion principle.
♦ Describe in one sentence the concept of symbiosis, and define in two sentences the concepts of parasitism, commensalism and mutualism using a pair of organisms to exemplify each.
♦ Describe in a short paragraph why a predator and prey can exhibit a cyclical relationship in terms of population oscillations.
♦ In one sentence define the term keystone species, and using a real-life example in a brief paragraph specify its roles in shaping the structure of its community.
♦ Define the term co-evolution in terms of predator and prey, and explain in one paragraph how predation pressure has led to an evolutionary biological “arms race.”
♦ Define the term “ecological succession” in one sentence.

ECOSYSTEMS AND THE BIOSPHERE

♦ Define the term “ecosystem” in one sentence.
♦ Describe in one short paragraph the general flow of energy and the cycling of nutrients through ecosystems.
♦ Name and define each trophic level in an ecosystem and cite an example for each level, using the following terms: producer, primary consumer, secondary consumer, tertiary consumer, decomposer, herbivore, carnivore, omnivore, autotroph, and heterotroph.
♦ Make a table that compares the number of individuals, biomass, amount of energy, and the efficiency of energy transfer (i.e., the percentage of energy transferred and converted to new biomass between levels) at each trophic of an ecological food pyramid.
♦ Using one sentence for each element, state the key functions of carbon, hydrogen, oxygen, and nitrogen in living things.
♦ Describe in a series of steps each of the following biogeochemical cycles: hydrological, carbon, nitrogen, and phosphorus.
List at least three effects of humans on the cycling of nutrients in the biosphere.

Using one or two sentences for each item, define each of the following environmental issues and explain the contribution of human technological advances to each: eutrophication, thermal pollution, acid rain, the greenhouse effect, deforestation, and the introduction of invasive species.

CONSERVATION BIOLOGY

Define the following terms using one sentence for each term: conservation biology, restoration ecology, and biodiversity (including genetic diversity, species diversity, and ecosystem diversity).

List the key benefits of biodiversity, and discuss in one short paragraph several threats to biodiversity.

Define population conservation, and explain in three to four sentences the goals of this endeavor.

Using one or two sentences, state the meaning and consequences of the extinction vortex.

List the objectives of restoration ecology.

Define sustainable development and explain its benefits in three to four sentences.

APPLYING THE SCIENTIFIC METHOD

Prepare a two to five page written laboratory report using the proper scientific format, including introduction, hypothesis, materials and methods, results and data analysis, discussion, conclusions, and references (or equivalent).